Xprobe2++

Low Volume Remote Network Information Gathering Tool

Yarochkin Fyodor, Ofir Arkin, Meder Kydyraliev, Shih-Yao Dai,
Yennun HUang, Sy-Yen Kuo

National Taiwan University

July 1, 2009

Contents

Introduction
Objectives
Remote Fingerprinting
What, Why and How to fingerprint
Needs for improvement

Contents

Introduction
Objectives
Remote Fingerprinting
What, Why and How to fingerprint
Needs for improvement

Tool Architecture
Modules, Information Gain, Algorithm
"Lazy" portscanning
Application Layer Probes
Dealing with honeypot systems

Contents

Introduction
Objectives
Remote Fingerprinting
What, Why and How to fingerprint
Needs for improvement

Tool Architecture
Modules, Information Gain, Algorithm
"Lazy" portscanning
Application Layer Probes
Dealing with honeypot systems

Evaluation

Contents

Introduction
Objectives
Remote Fingerprinting
What, Why and How to fingerprint
Needs for improvement

Tool Architecture
Modules, Information Gain, Algorithm
"Lazy" portscanning
Application Layer Probes
Dealing with honeypot systems

Evaluation

Current and Future developments

Contents

Introduction
Objectives
Remote Fingerprinting
What, Why and How to fingerprint
Needs for improvement

Tool Architecture
Modules, Information Gain, Algorithm
"Lazy" portscanning
Application Layer Probes
Dealing with honeypot systems

Evaluation
Current and Future developments

Conclusion

The Xprobe Tool

Xprobe project started as remote fingerprinting tool to probe
remote systems using ICMP protocol queries.

Other protocols support was added later.

Fuzzy fingerprinting mechanism was introduced to improve
fingerprinting of unknown systems, or systems with modified
network stack settings.

With new version of the tool we optimize algorithm of module
execution, introduce information gain metrics.

Introduce new modules that work at application-layer.

Objectives

With this tool we ..

» Collect Remote Host Information(OS type)
» Selectively Collect Services information
> Selectively Collect Network Information(en route)

» Minimize network overhead and tool detectability by
minimizing number of queries and selective probes execution.

What is Remote FingerPrinting?

Fingerprinting
- identifying type of software on remote system.

Passive vs. Active

Passive and Active Fingerprinting methods exist.

With Xprobe we implement active fingerprinting methods, i.e. we
DO send packets to elicit responses.

Why we do it?

Attack Surface
Collecting information on remote system is the first step of
identifying potential "attack surface” of a remote host.

Data Usage

Collected data could be used for correlation of IDS data, targetted
exploitation of remote systems, network inventory etc.

Challenges

Modern Fingerprinting tool faces following problems
» Altered network stack settings lead to deviations from
pre-collected signatures.
> itermediate devices may alter or normalize traffic.

» analyze intermediate device responses as they also may be
used as jump-points for attacks

» dealing with "honeypots”

Remote FingerPrinting

What

We fingerprint different types or families of operating systems
trying to identify the type and version of remote OS as close as
possible.

How

We manually analyze the protocol specifications and identify
"vague" spots. Then we analyze how different types of software
(OS) are responding to these types of "vague” packets/requests.
Signatures are created using the difference in responses. Further
signature collection for "untested” platforms is automated.

What are we trying to improve here

Application Layer Probing

We expand the types of probes that we could use to cover Layer7
(application).

This gives us more probes to collect data from.

This also allows us to trigger responses from intermediate devices.

Minimizing probes

We minimize the number of 'probes’ that we sent to the target by
introducing new adaptive algorithm which does not execute
'probes’ that could bring us no new knowledge about target system.

Benchmarking difficulties

It is difficult to perform a fair benchmarking of operating system
fingerprinting tools because the success of fingerprinting process is
heavily dependent on the network environemt, available protocols,
running services and so on.

Different network configurations may lead to different number of
"queries” to be required, type of target operating system (some
queries could be more successeful in fingerprinting particular
platforms.)

Overall Tool architecture

module selection Y network)I [optional]
and reordering discovery port scanning

service discovery

network layer

fingerprinting ¢

application layer
fingerprinting

K

fuzzy signature matching

Modules and Information Gain

Prior fingerprinting
Information gain is calculated based on prior distribution of OS
classifications, p(x;) over all possible classifications.

After fingerprinting

Information gain is calculated based on posteriori distribution of
p(x;i—testik).

Information gain is re-calculated on every iteration.

Derrived from " Towards Undetected Operating System
Fingerprinting” by Greenwald et. al.

Adaptive Module Execution Algorithm

reorder
by gain

calculate
» information
>

gain

success

no more

false modules?

exec
dependency

not
satisfied

all
modules
gain =0?

top
module
data req?

failed

4
I"\
| disable |< satisfied

execute

Recursion on " execute dependency”

find
dep. provider

Ik I

return
fail

return
SUCCess

return

exec. dependency

Why preluminary port scanning is not neccessary

Using this algorithm we can ensure that the only time we perform
a probe of host reachability, or port status, when the fingerprinting
process actually requires such data in order to execute module with
non-zero information gain value.

Extending the tool with application-layer probes

Application-layer probes can be used as complementary tests to
the network layer modules. (i.e. http probing)

Extending the tool with application-layer probes

Test type Usable Protocol Test
Directory Separator HTTP Win /Unx
New line characters HTTP Win/Unx

Special/reserved filenames HTTP Win/Unx
Root directory FTP Win/Unx..
Special characters (EOF,EOL
Filesystem limitations HTTP, FTP
Filesystem illegal characters HTTP, FTP .
Case sensitivity HTTP, FTP Win/Unx
Special filenames handling HTTP, FTP Win /Unx
Special files in directory HTTP, FTP Win /Unx
Binary file fingerprinting FTP Win/Unx

Other things that can be found at application-layer

bomzh (echo -e "COMMECT 192,168,8,254:23 HTTP/L,0%nvrin"tcat) | no L1406 20
HTTPAL.0 200 Connection established

Proscy-agent: Cachel Lou-Proxgl,0

LU EE

futhorised access only

This system iz the property of Hilet

Tisconnected IMMEDIATELY if you are no an authorised user!

Contact backbone® .t (02) for help

User Access Werification

Fassuord;

Other things that can be found at application-layer

Tracing the path to w,orztean,com (58,222,16,85) on TCP port B0 (http). 11 hop
= max, 791 byte packets

114,45.208.254 157.892 ms 190,266 ms 151.822 ms

168,95,71,62 151,827 ns 152,767 ms 166,531 ms

220,128,4,118 185,882 ms 152,328 ms 151,788 ms

B3R 2

210,65,250,241 154,322 ms 160,305 ms 151,788 ms
211,22,33.225 211,852 ms

211,22,33,225 216,486 ms

Dealing with honeypot systems

of course there's no way to identify all types of honeypots.
However we can make "educated guess” if the target systems are
part of honeypot based on similarity of discovered services and
systems, responses to malformed requests, similarity in application
layer responses and so on.

This is still an open-research direction.

Tool Evaluation

We already mentioned that doing a fair-benchmarking of
fingerprinting tools is hard to implement due to difference in
methods using by different tools, which relay on availability of
different network protocols.

Tool Evaluation

This illustration simply demonstrates that less network bandwith is
consumed when "lazy” port-scanning approach is used.

xprobe and nmap traffic g
50k 1
& I g
= 40 k nmap = 3
& | R
g]
H 2
5 & 3 xprobe2
14150
M throughput Min: 2.8k Max: 53,8k Awg: 18,7k Current: 4,2k

Current developments

We are still working on ..

Integrate python as module-development language

Implementing prototyped tests in the tool

>
>
» More application-layer modules
» en-route discovery

>

re-engineering of module-API for effective mass-scanning

Future Developments

Prototyping the decentralized network for data sharing between
instances of the scanning tool.

> queries for existing results
» signatures and modules sharing
> statistics mining (improves signature matching)

» collaborative architecture

Tool Availability

Released under GPL license
project website: http://xprobe.sourceforge.net

Availability of presented version
- will be released via @sourceforge after 7/7
- git for "bleeding edge” code.

Quick Demo

(if | get my computer to show stuff here) it's a command line tool.
so no impressive flashing-lights ;-)

udp_pin
1.2

172,16,131,
probabili

Conclusion

We consider these as our primary contributions:
» Fingerprinting process without pre-scanning (" lazy”
portscanning)
» Adaptive algorithm, that utilizes information gain measure
and data dependency for scheduling of fingerprinting tests.

» OS fingerprinting using application layer tests

Questions/Answers/Comments

We love questions :)

	Introduction
	Objectives
	Remote Fingerprinting
	What, Why and How to fingerprint
	Needs for improvement

	Tool Architecture
	Modules, Information Gain, Algorithm
	"Lazy" portscanning
	Application Layer Probes
	Dealing with honeypot systems

	Evaluation
	Current and Future developments
	Conclusion

